Early events in naphthalene-induced acute Clara cell toxicity: comparison of membrane permeability and ultrastructure.

نویسندگان

  • L S Van Winkle
  • Z A Johnson
  • S J Nishio
  • C D Brown
  • C G Plopper
چکیده

Naphthalene causes severe dose- and site-selective injury to mouse nonciliated bronchiolar (Clara) epithelial cells. Toxicity is characterized by exfoliation of injured Clara cells into the airway lumen 24 h after exposure. The purpose of this study was to define the temporal pattern of intracellular changes immediately following naphthalene treatment, with the goal of identifying critical early events involved in cytotoxicity. Mice were injected with naphthalene or carrier and were killed 1, 2, 3, and 6 h after treatment (PT). Loss of membrane integrity was assessed by ethidium homodimer-1 permeability and confocal microscopy. Cell morphology and ultrastructure were evaluated using high-resolution light and electron microscopy. Permeable cells were found only in terminal bronchioles and increased in abundance with time PT. At 2 and 3 h PT, when most Clara cells had early signs of injury, few permeable cells were detected. Many Clara cells had apical membrane blebs that contained abundant, swollen, smooth endoplasmic reticulum (SER) and few other organelles. By 6 h PT many Clara cells were membrane-permeable. However, many permeable Clara cells lacked apical blebs and SER was less abundant in these cells. Cytoplasmic blebbing may be a mechanism to protect the cell by isolating and removing damaged SER. We conclude that the early stages of injury include SER swelling and bleb formation which precede increases in cell membrane permeability after acute naphthalene injury to bronchiolar Clara cells in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Consequences of abrupt glutathione depletion in murine Clara cells: ultrastructural and biochemical investigations into the role of glutathione loss in naphthalene cytotoxicity.

Glutathione plays many critical roles within the cell, including offering protection from reactive chemicals. The bioactivated toxicant naphthalene forms chemically reactive intermediates that can deplete glutathione and covalently bind to cellular proteins. Naphthalene selectively injures the nonciliated epithelial cells of the intrapulmonary airways (i.e., Clara cells). This study attempted t...

متن کامل

Keratinocyte growth factor protects against Clara cell injury induced by naphthalene.

Airway epithelial cells are exposed to environmental toxicants that result in airway injury. Naphthalene (NA) causes site-selective damage to Clara cells in mouse distal airways. N-terminally truncated recombinant human keratinocyte growth factor (DeltaN23-KGF) protects against acute lung injury. The present study investigated whether or not DeltaN23-KGF protects against NA-induced acute Clara ...

متن کامل

Early events in naphthalene-induced acute Clara cell toxicity. II. Comparison of glutathione depletion and histopathology by airway location.

One of the presumed roles of intracellular glutathione (GSH) is the protection of cells from injury by reactive intermediates produced by the metabolism of xenobiotics. To establish whether GSH depletion is a critical step in the initiation of events that lead to cytotoxicity by P450-activated cytotoxicants, naphthalene, a well-defined Clara cell cytotoxicant, was administered to mice (200 mg/k...

متن کامل

The Tween 80 Toxicity in Chicken Embryos and Effect on the Kinetics of Newcastle Disease Virus Replication

Background: Non-ionic surfactant, Tween-80 (TW80) is commonly used for drug delivery due to its effect on the cell membrane permeation. The change in permeability can also increase viral infectivity in cells. This study was undertaken to improve upon Newcastle disease virus (NDV) titer cultivated with embryonic chicken eggs. Methods: The toxicity of TW80 was investigated against chicken embryo...

متن کامل

Oxidative membrane damage and its involvement in gamma radiation-induced apoptotic cell death.

Background: Recent results have provided increasing evidence to support involvement of membrane damage in the mechanism of ionizing radiation induced killing of mammalian cells. These findings have stimulated renewed interest in evaluating the damage to membrane as a primary initiator in radiation-induced cell killing especially in apoptotic death. The present study was aimed to gain deeper ins...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of respiratory cell and molecular biology

دوره 21 1  شماره 

صفحات  -

تاریخ انتشار 1999